(Deacon, Patrick, Skelton, Thomas \& White, 1984), the terpyridine ligand was bonded in a bidentate fashion.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Deacon, G. B., Patrick, J. M., Skelton, B. W., Thomas, N. C. \& White, A. H. (1984). Aust. J. Chem. 37, 929-945.
Sheldrick, G. M. (1986). SHELXTL. Crystallographic computing system. Nicolet Instruments Division, Madison, WI, USA.

Structure of Bis(ethylenediamine)platinum(II) Dichloride

By Shoichi Sato
The Institute for Solid State Physics, The University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan

and Mikako Haruki* and Susumu Kurita
Faculty of Engineering, Yokohama National University, Tokiwadai 156, Hodogaya-ku, Yokohama 240, Japan

(Received 4 December 1989; accepted 23 January 1990)

Abstract

Pt}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl}_{2}, M_{r}=386 \cdot 2\), triclinic, $P \overline{1}$, $a=6.918$ (4), $\quad b=8.378$ (5) $\quad c=4.951$ (2) $\AA, \quad \alpha=$ $98.00(6), \quad \beta=100.15(6), \quad \gamma=108.57(6)^{\circ}, \quad V=$ $261.8(2) \AA^{3}, Z=1, D_{x}=2.25 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Ag} K \alpha)=$ $0.56087 \AA, \mu=7.5 \mathrm{~mm}^{-1}, F(000)=180, T=298 \mathrm{~K}$. $R=0.022$ for 3111 unique reflections. The ethylenediamine moieties coordinate in a square planar manner with amino N atoms attached to the Pt atom at the center of symmetry. The five-membered chelate rings adopt the meso form with the ligands in almost symmetric gauche (synclinal) conformations. The C atoms are shifted about $0.35 \AA$ above and below the PtNN plane. The complex cations are linked two-dimensionally along the (010) plane by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. No short contacts are observed along \mathbf{b}.

Experimental. Crystals prepared by recrystallization from an aqueous solution of the title compound (Bekaroglu, Breer, Endres, Keller \& Nam Gung, 1977). The details of data collection and structure refinement are summarized in Table 1. The structure was solved by the heavy-atom method, and refined by full-matrix least squares. The H atoms were deduced clearly from difference Fourier maps, and included in the refinement. Thermal parameters were anisotropic for the non-H atoms and isotropic for the H atoms. Since two space groups, $P 1$ and $P \overline{1}$, were possible, refinements were attempted for both space groups; they converged in quite similar

[^0]0108-2701/90/061107-02\$03.00
structures with nearly the same R values. Therefore, the centrosymmetric space group $P \overline{1}$ was selected.

A projection of the structure along \mathbf{c} (in which direction the cations are obliquely stacked) is shown in Fig. 1. The final atomic coordinates and equivalent isotropic thermal parameters are listed in Table $2 . \dagger$ Bond lengths, angles, hydrogen bonds and torsion angles are tabulated in Table 3.

Atomic form factors and $f^{\prime}, f^{\prime \prime}$ values taken from International Tables for X-ray Crystallography (1974). Calculations performed on a FACOM

Abstract

\dagger Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52624 (8 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

Table 1. Experimental details
Crystal Colourless, transparent, plate like;
shaped to a sphere ($d=0.37 \mathrm{~mm}$) Rigaku AFC-3, graphite monochromator ω mode, width $(2.4+0.8 \tan \theta)^{\circ}$, speed $2^{\circ} \mathrm{min}^{-1}, 2 \theta<60^{\circ}$ $062,054,710,374,4 \overline{8} 3$; every 50 reflections, no significant fluctuation
$h 0 \rightarrow 12, k-14 \rightarrow 14, l-8 \rightarrow 8$
Measured 3113
Observed 3111, $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$
Lp, absorption ($\mu r=1 \cdot 39$)
$0.15-0.19$
68 reflections, $19.5<\theta<21 \cdot 5^{\circ}$
$\left.\sum w\left(F_{o}-F_{c}\right)^{2}, w=\left[\sigma^{2}\left(F_{o}\right)+\left(0.015 \mid F_{o}\right)\right)^{2}\right]^{-1}$
66
$0.022,0.028,1.04$
0.04
-1.8 and $3.0 \mathrm{e} \AA^{-3}$ near the Pt atom
(-0.5 and $0.4 \mathrm{e} \AA^{-3}$ elsewhere)

Table 2. Positional and thermal parameters with e.s.d.'s in parentheses

Fig. 1. A projection of the structure along \mathbf{c} with the atomic numbering scheme. Thermal ellipsoids are drawn at the 60% probability level; a value of $0.8 \AA^{2}$ is given for the $B_{\text {iso }}$ of the H atoms in this figure. Broken lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

M-380R computer at ISSP, The University of Tokyo. Computational programs used were UNICSII (Sakurai, 1967), RADIEL (Coppens, Guru Row, Leung, Stevens, Becker \& Yang, 1979) and ORTEPII (Johnson, 1971).

Table 3. Bond lengths (\AA), angles $\left({ }^{\circ}\right), \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (\AA) and torsion angles $\left({ }^{\circ}\right)$

$\mathrm{Pt}-\mathrm{N}(1)$	2.039 (3)	$\mathrm{Pt}-\mathrm{N}(2)$	2.046 (3)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.492 (4)	$\mathrm{N}(2)-\mathrm{C}(2)$	1.483 (5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.502 (6)		
$\mathrm{N}(1) \cdots \mathrm{Cl}^{\text {i }}$	3.242 (4)	$\mathrm{N}(1) \cdots \mathrm{Cl}^{\text {i }}$	$3 \cdot 213$ (3)
$\mathrm{N}(2) \cdots \mathrm{Cl}$	$3 \cdot 255$ (4)	$\mathrm{N}(2) \cdots{ }^{\text {ciii }}$	3.365 (4)
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(2)$	83.1 (1)	$\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(1)$	109.3 (2)
$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(2)$	109.0 (2)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.3 (3)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	107.5 (3)		
$\mathrm{N}(2)-\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(1)$	14.0	$\mathrm{N}(1)-\mathrm{Pl}-\mathrm{N}(2)-\mathrm{C}(2)$	$15 \cdot 2$
$\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-40.2	$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	-41.2
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	53.4		
Symmetry operations: (i) $-1+x, y, z$; (ii) $-1+x, y,-1+z$; (iii) $1-x$,			

Related literature. The geometry and conformation of the en ring (en = ethylenediamine) are very similar to those in $\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Sato, Haruki, Wachter \& Kurita, 1990).

References

Bekaroglu, O., Breer, H., Endres, H., Keller H. J. \& Nam Gung, H. (1977). Inorg. Chim. Acta, 21, 183-186.
Coppens, P., Guru Row, T. N., Leung, P., Stevens, E. D., Becker, P. J. \& Yang, Y. W. (1979). Acta Cryst. A35, 63-72.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1971). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sakural, T. (1967). Editor. UNICSII. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo, Japan.
Sato, S., Haruki, M., Wachter, P. \& Kurita, S. (1990). Acta Cryst. In the press.

Acta Cryst. (1990). C46, 1108-1110

Structure of an Optically Active Organoaluminium Naphthylethylamine Dimer

By William T. Pennington,* Gregory H. Robinson* and Samuel A. Sangokoya
Department of Chemistry, Clemson University, Clemson, SC 29634-1905, USA

(Received 15 September 1989; accepted 2 January 1990)

Abstract

Bis- μ-[1-(1-naphthyl)ethylaminato- N]bis[dimethylaluminium(III)], $\left[\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)_{2}\right.$], $M_{r}=454 \cdot 62$, monoclinic, $P 2_{1}, a=10 \cdot 925$ (4), $b=$ $11 \cdot 129$ (4), $\quad c=11 \cdot 212$ (4) $\AA, \quad \beta=94 \cdot 18$ (3) ${ }^{\circ}, \quad V=$ 1359.6 (8) $\AA^{3}, Z=2, D_{x}=1 \cdot 11 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=$ $0.71073 \AA, \mu=1.19 \mathrm{~cm}^{-1}, F(000)=488, T=294 \mathrm{~K}$, $R=0.0355$ for 1615 observed reflections. The reaction of trimethlyaluminium with $(R)-(+)-1-(1-n a p h-$

[^1]0108-2701/90/061108-03\$03.00
thyl)ethylamine involves cleavage of $\mathrm{Al}-\mathrm{C}_{\mathrm{Me}}$ and $\mathrm{N}-\mathrm{H}$ bonds resulting in elimination of methane and formation of an asymmetric $\mathrm{Al}_{2} \mathrm{~N}_{2}$ fragment, as the core of a dimeric molecule consisting of two $\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NHAl}\left(\mathrm{CH}_{3}\right)_{2}$ units. The molecule has approximate C_{2} symmetry, with an average $\mathrm{Al}-\mathrm{N}$ bond distance of 1.96 (1) \AA.

Experimental. The title compound results from the slow addition of a trimethylaluminium/toluene solu© 1990 International Union of Crystallography

[^0]: * Present address: Laboratorium für Festkörperphysik, ETHHönggerberg, CH-8093, Zürich, Switzerland.

[^1]: * To whom correspondence should be addressed.

